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Abstract-A finite deformation theory for axially symmetric thin elastic-plastic plates is obtained by a
consistent approximation from the corresponding three-dimensional theory. This theory can be applied to
plates of finite thickness, and is different from the usual plane stress theory. The problem of the expansion of
a circular hole in an infinite plate is investigated and the effect of the transversely variable stress components
is studied.

J. INTRODUCTION
The problem of the enlargement of a circular hole in an infinite plate of uniform initial thickness
has been studied by Taylor [1], Hill [2], Prager [3] and Hodge and Sankaranarayanan [4]. Nordgren
and Naghdi studied the problem of annular plates [5-6]. Similar problems for plates of
non-uniform thickness have been considered by Alexander and Ford [7], Rogers [8],
Nemat-Nasser[9], Chern [10] and Chern and Nemat-Nasser[ll-13]. Mansfield solved the
problem of a variable thickness sheet subjected to the radial stress at infinity [14].

The studies mentioned above are based on the plane stress theory which is formulated under
the assumption that the transverse stresses can be ignored throughout the plate. This theory is
adequate for a very thin plate. However, the theory for plane stress contains almost no mention
of the ranges of application to actual plates of finite thickness. The transverse shear stress
components are expected to appear in finite, especially variable thickness plates [l5-17].

Any two-dimensional theory (one-dimensional theory for axially symmetric problems) is
necessarily an approximation of the exact three-dimensional theory. The study of making
consistent formulations of the two-dimensional theory and of finding its ranges of application, is
important in practical problems. Although it is the best to use the three-dimensional solutions for
finding the validity of the corresponding two-dimensional theory, the three-dimensional
equations are often difficult to solve. The author has developed systematically a two-dimensional
theory, starting from the three-dimensional equations, for the finite in-plane deformation of thin
elastic-plastic plates of finite thickness in which the transverse shear deformability is taken into
account[17]. It is a consistent extension of the usual plane stress theory.

We introduce parameters A and Ak , where A denotes an equivalent thickness depending on the
wave length of the deformation pattern on the middle plane, and Ak is a function which
characterizes the variation of the initial thickness. Further, we let Eo be the magnitude of strain.
The parameter A becomes larger as the values of the stress (or strain) gradient in the longitudinal
direction andlor the ratio hola increases; here ho is the initial thickness, and a is the smallest
characteristic length of the middle plane. For plates with a large variation of the thickness ho
andlor a large value of the ratio hoIa, Ak takes on a large value. The two-dimensional theory is
found to be valid when O(Eo, A2, Ak

2
) ~ AB

2
, where AB is a certain universal constant[17]. If we

consider the results given by Alexander and Ford [7] as an example, the stress concentrates
rapidly near the rim of the hole so that hoIa has to be sufficiently small in order to satisfy the
above condition. The transverse shear stress may become important for problems within the
usual ranges of the two-dimensional theory; it may even become of the same order to the in-plane
stresses for plates with large Ak •

In this paper, we consider the axisymmetric expansion of a circular hole in an infinite plate of
uniform, or non-uniform, initial thickness using the two-dimensional finite deformation theory
derived by the author[17]. The development is made in a Lagrangian frame of reference. The
material of the plate is assumed to obey the von Mises yield criterion and the modified
Prandtl-Reuss incremental relationship adopted by Hibbitt et al. [18]. Further, an isotropic
hardening of the Ramberg-Osgood type is assumed here. First, we summarize the basic equations
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for axisymmetric problems of plates. A second order non-linear differential equation is derived in
terms of the increment of the radial displacement component. Then we obtain iteratively
solutions of the finite difference approximation of this equation.

2. BASIC EQUATIONS FOR AXIALLY SYMMETRICAL PROBLEMS

Although the greater part of this section depends largely on [17], it will be stated here for further
use.

2.1 Geometrical preliminaries
Let (r, 0, z) denote a convected cylindrical coordinates and the plane z = 0 be taken as the

undeformed middle plane of the plate, which we shall call the plane So. The undeformed plate is
bounded by the surfaces z = ± ho/2 where ho may be a function of r.

We consider a plate to undergo a deformation symmetrical about the plane So. The square of
the length dso of a line element on the plane So is given by (dS O)2 = (dr)2 +(rdO)2. In the deformed
state the square of the length ds of the same material line element changes to

(2.1)

where

(
dU)2

Ar = 1+ dr ' Ae = (1 +~y. (2.2)

The strain components in the Lagrangian coordinates are therefore expressed by

yre =O. (2.3)

The initial volume element dTo changes to dT = Y(G) dTo after deformation where

G = (:~)
2

= (1 +2,= )ArAe•

The quantity 'Z is a coefficient relating to the transverse strains.

(2.4)

2.2 Simplification from the three-dimensional theory
Let Sr and Se/r2 denote the Kirchhoff stress tensors at a point on the surface So. Further let L

and L h denote the wave lengths of the deformation pattern and of the variation of the
undeformed thickness ho, respectively, in the radial direction of the plate. We put

So = maxV(s/ + s/),
So

00 = max Ir.l,
So

hoA = max-,
So L

ho
Ah =max-

L
'

So h

(2.5)t

where r. is the value of 'Z at z = O. We also define the following symbols:

k~ / (k) 2 (k) 2
€k = max ho v [( € r) +( € e) ],

So

kj (kl II'k = max ho I'rz,
So

kl<k) IOk max ho € z ,
So

k I(k) Itk = max ho s rz ,
So

(2.6)

Uk = ms~x hokl<;l.zl, (knotsummed), k = 0,1,2, ... ,

(k) (k) h ffi . f h . . '" k lk1 '" k,lklwhere €,., S e, etc., are t e coe Clents 0 t e expansIOn equations €r = .. Z f r, Se = .. Z S e,
k k

etc., (k = 0,1,2, ...) respectively.
According to the consideration in Chapt. 3 of [17], we make the following assumptions as a

useful and reasonable guide to formulate the plate equations:

tThe parameters ,\ and A. thus defined are more convenient for practical plate problems of variable thickness than those
in [17].
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(2.7)t
k = 1,2,3, ... ,

where AB is a universal constant which is chosen in such a way that the two-dimensional solution
is valid with sufficient accuracy.t

The material of the plate is assumed to be governed by the von Mises yield criterion and the
constitutive relationship adopted by Hibbitt et al. [18]. Further we assume

in which
H'~ So, (2.8)

(2.9)

where E is Young's modulus and ET is the slope of the uniaxial stress-strain curve. The
assumption (2.8) is widely applicable to many materials such as non-ferrous metals. The usual
hardening materials stated mathematically by the Ramberg-Osgood equation are typical
examples.

The axisymmetric equations based on (2.7) and (2.8) will be given below.

2.3 Equation of equilibrium
The state of stress in the absence of body and inertia forces will be considered. The

mechanical boundary condition is specified on the surface r = r* and the major surfaces
z = ± ho/2 are free from applied forces. We will state the simplified field equations for thin plates
of finite thickness in which A and Ah are large enough, so that one needs to take into account the
lowest order component of the transverse shear stress.

We denote the Lagrangian stress tensors by tr, t.lr2 and trz• Final results will only be given for
the field equations in terms of the Lagrangian stress tensors. The derivation of these equations is
referred to Chapt. 4 of [17].

From (4.4) and Table 1 of [17] we have the following expressions in both elastic and plastic
domains:

(0) (2)

Litr = at r + z2a t r + O(A "aso, AAhasO),

and

(0) (2)

Lit. = at. + z 2a t.::t- O(A "aso, AAhasO),

(2.10)

(2.11)

where "a" indicates the increment. The transverse normal stress is still smaller than those stress
components.

We introduce a parameter 11 defined by

(2.12)

where L * is the wave length of the solution obtained by the usual plane stress theory (Chapt. 4 of
~ ~ .

[17]). We assume that at r, at., aer ae. and au can be expanded as absolutely convergent serIes
of 7/. For example

(0) (0) (0)a t r = ao t r + 11 a2 t r + .... (2.13)

tThe case where A2 < Eo can also be treated if A2 is replaced by Eo in the error terms of the simplified equations (2.10),
(2.38) and (2.39). However in many stress concentration problems the applicability of the plate theory depends exclusively on
the value of A.

+In the elastic stress concentration problems the two-dimensional assumption is found to be valid for plates with
AB ::::; 0(1)[15].
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The relation between the Lagrangian and Kirchhoff stress components are

(2.14)

where oA,., oA8 , os, and OS8 are the coefficients of 11 0 in the corresponding expansion equations of
A,., A8, s, and S8, respectively. 'OJ (0)

The equilibrium equation governing ~o t , and ~o t. is the same as those of the usual plane
stress theory. It can easily be transformed into the equation in terms of the Kirchhoff stress
tensors:

(2.15)

Here and in the following A,., A., u, s, and s. are occasionally written instead of oAr, oA., ou, os,
and os. for simplicity.

The stress resultants in our theory are defined by

(2.16)

Boundary condition at r = r* is derived from (4.38) of [17] as follows:

(0) _ -l *
~o t, - h

o
~n "

where ~n ~ is the increment of the prescribed stress resultant at r = r*.

(2.17)

2.4 Constitutive equations
In this subsection the equations for the coefficients of TJ 0 will be derived. They do not contain

the transversely variable stress and strain components. It is shown that the constitutive equations
adopted by Hibbitt et al. [18] can be transformed into the following relations

(2.18)

where

with

S 2 ( H~) 2 2 A A 2 2
0= 3G

o
1+ 31J- (A, s, - , 8S,S. +A. S8 ),

(2.19)

(2.20)

Sm = A,s, + A.s8 , Go = (1 + 2rz )A,A8 , (2.21)



Finite expansion of a hole in an elastic-plastic thin plate of finite thickness 1003

B
1 r,

'=-A +-1-2-', + r,
(2.22)

and where /-L is the shear modulus, IJ Poisson's ratio and

(2.23)

(2.24)

If we denote the equivalent stress by SE which corresponds to the slope H~ of the uniaxial
stress-strain curve, we have

2 3So

SE = ( H')'2 1+_'
3/-L

The increment of the transverse normal strain is expressed by

(2.25)

(2.26)

The differential equations in terms of the displacement increment Au ( == Aou) is obtained by
the substitution of (2'18) into (2'15) and with the aid of (2.3).

2.5 Transversely variable stress and strain components
It is convenient for the treatment of the transverse components to employ a new coordinate i

which denotes the perpendicular distance from the deformed middle plane. We therefore
introduce a new coordinate system (r, 0, i) in addition to (r, 0, z) in which (r, 0,0) = (r, 0,0). Using
the estimates of the higher order strain components given in Table 1 of [17], we have

8r
8z = O(Afo),

(2.27)

8i 2)8z = 1+ r, + O(A fo, AAhfo .

If we denote the Kirchhoff stress tensors at a generic point of the plate defined in the new and
original coordinate systems by putting a bar and a hat respectively over the symbols, we find from
(2.27) the following relations

As, = As, + OrA 2A(foso)],

As" = As" +ZA(~~' s,) + OrA 3A(foso), AhA(foso)],

AS, = As, + OrA 2A(fo2so)].

(2.28)

The stress components As" AS9 and As, can be approximated by As,., AS9 and As, respectively
within the magnitudes of the error terms mentioned above.

By taking account of the error terms in (2.10) and by using (2.12), (2.13) and (2.14), it can be
shown that

(2.29)
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h
2. 2 '2) 4 2 2. (2~ 4

were ho ~S2, = ho ~ t, +a(A ~so, AAh~SO) and ho ~S2. ho ~ t. +a(A ~so, AAh~SO). These
second order terms are also interpreted as the components proportional to 11 when the
mechanical boundary conditions are specified on the rim of the hole (Chapt. 4 of [17]).

The strain components corresponding to (2.10) are as follows:

where by (4.35) of [17]

(2.30)

The constitutive equations for the second order in-plane components are also found from the
exact three-dimensional equations. They are

(2.31 )

where

(2.32)

with

8 - 2(1 Hb)[2( ) 2Hi. 2 2
2 - 3' + 3J.L SrS2r + SeS20 - SrS20 - SeS2r] + 9J.L (Sr - SrSO + So ), (2.33)

(2.34)

and

b,=I+f" be = 1+f o, (2·35)

2(1- 2v)r 26 = - 98
0

C [S2m (2so - Sr) + Sm (2s20 - S2') - 2SmS 2mr 0]'

The slope H' = Hb+ h02H~/4 corresponds to the equivalent stress S2E given by

(2.36)

(2.37)
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It is easily shown that the deformed thickness h is approximately connected with ho by
h = rzho. From (4.1) and (4.15) of [17] the maximum shear stress through the thickness is given by

(2.38)

The transverse normal stress is less important than the other stresses for thin plates since by (4.8)
of [17]

(2.39)

3. EXPANSION OF A HOLE IN AN INFINITE PLATE

3.1 Statement of problem and method of solution
We consider a thin infinite plate of the initial thickness ho with a cylindrical hole of the initial

radius a. Let a gradually increasing pressure be applied over the surface of the hole.
For convenience in obtaining the solution, we introduce the following non-dimensional

quantities:

(3.1)

By taking account of (2.17), (2.29) and the relation between the Kirchhoff stress tensor and the
physical component of the stress in the deformed state, the following boundary condition can be
used at P = I for simplicity:

ilSp = - ilQ(say). (3.2)

A second order differential equation in terms of il U is derived from (2.15) through (2.18), (2.3)
and (3.1). The boundary condition (3.2) is also expressed in terms of il U.

Now we shall suppose that the material of the plate shows the non-linear stress-strain
behavior of the Ramberg-Osgood type:

(3.3)

where IE and a are the logarithmic strain and the true stress respectively, B is a material constant
and N is a function of strain hardening. In this paper we will take an alluminium alloy [20]
(B /E = 7·23 X 10-3

, N = 10) as an example of the materials having the non-linear stress-strain
relation. Therefore Ho is numerically equal to

where w = 51·8. (3.4)

Poisson's ratio has been taken equal to 1/3. Fig. I shows the uniaxial stress-strain curve for this
material.

Following [10-13] the initial thickness of the plate is assumed to be given by ho= ar n where a
and n are constants. Here n is assumed to satisfy n ~ O.

Since it is difficult to solve the non-linear differential equations explicitly, we shall apply the
finite difference method. A uniform mesh of points is placed in the interval 1~ P~ k:

Pi = id + I, i = 0,1,2, ... , I,
k -1

d=-I-' (3.5)

where P ~ k is the domain in which the deformation is so small that the linear elasticity can be
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used with sufficient accuracy. The displacement U(p) is then approximated by a mesh function
U,. We employ here a difference quotient to approximate a differential quotient with an error
O(d 2

) as d ->0. The finite difference equivalents of the differential equation and the boundary
conditions can be written in the form

i. j, q = O. I, 2, ... , I, (3.6)

where /0 = 0 corresponds to the boundary condition (3.2). As for the condition /' = 0 we use the
following relation obtained from the linear elasticity

where

(1 + VX )~S" - (v +X)~SH = 0,

I / 0

X = 2" [- n - \: (n' + 4(\ - vn ))].

(3.7)

(3.8)

The non-linear algebraic equations (3.6) are solved iteratively starting from some initial
estimates of the mesh functions for a given value ~Q.

The stress increments ~SIfp and ~SII. are obtained from (2.32) after the displacement ~U is
determined. The transverse shear stress is also found from (2.38) and (3.1) as follows:

S- =! (ho)(drz !!)SP'2 d+ poa p p
(3.9)

3.2 Results and discussions
The numerical computation is executed by the computer NEAC 2200-700 for the plate having

the ratio ho/a = 0·5.t The results for k = 5·5 and 1 = 99 are shown below. From a series of test
calculations it was observed that the domain k ::;; 5·5 is purely elastic for ranges of the loads
considered. For comparison the plane stress solution of the classical elastic-plastic theory based
on the geometrically linear assumption was also calculated.

Figures 2-4 show the solutions for the plate of uniform thickness (n = 0). When the pressure
Q is small the equation (3.7) is satisfied with sufficient accuracy except in the neighborhood of the
rim of the hole as shown in Fig. 2a. The transversely variable stress components are also graphed
in Figs. 2b and 2c. These components are not large compared with the first order in-plane stresses
for the plate of the uniform thickness. However they become larger together with the value of the
ratio hoI a.:j: Representative graph of the ratio (h - ho)1ho is presented as the function of p in
Fig. 4.

In Figs. 5-7 the solutions for the variable thickness plate (n = - 0,5) are shown. From Figs. 5a
and 5b the transverse shear stress is found to be large which has been ignored in the usual plane
stress theory. That stress has to be taken into account for plates in which the ratio ho/a is about
0·5 or more.

It is also found from these figures that the classical solutions are valid only for Q< 10~2
except for the transversely variable components.

Applicability of the two-dimensional equations (one-dimensional equations for axisymmetri
cal problems) depends on the parameter AB . In many two-dimensional problems of the finite
thickness plate A and/or Ah plays an important part. Conversely for the problems in which the
stress concentrates rapidly in the radial direction, sufficiently small values are therefore required
of the ratio ho/a. It should be noted that the radial change of the thickness due to the deformation
is characterized by the parameter A.

tFor the theory of finite thickness plates the ratio hoia has to be specified.
tIt is not easy to evaluate the numerical value of the bound AB • If we can apply the results in [15] to elastic-plastic

problems. AH is of all) so that the two-dimensional theory cannot be valid for plates with h"la ~ I. The parameter A is
approximately given hy

ho ~,,~x ISp,p. S6.p I

A=-----
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Finally it is noted that the solutions just obtained may involve some error in the close
neighborhood of the boundary. This is inherent in the two-dimensional theory. However, if the
distribution of the applied pressure over the thickness expressed in terms of the Kirchhoff stress
is considered to be the same as that of the normal stress Sr on the boundary, the solutions are
valid at any point of the plate with A~ AB •
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